EDU - Tutorial on Computational Geometry (9201)

Oswin Aichholzer 20th June 2006, TU Graz
Thomas Hackl 21st June 2006, TU Graz
Tibor Steiner 22nd June 2006, TU Wien
Computational Geometry

- We have points and lines and something is happening …
Computational Geometry

- Computational Geometry typically deals with (many) (simple) objects of constant size (points and straight lines).
- Then we do something algorithmically or combinatorial …
- We are interested in the asymptotical time / space complexity of an algorithm or a structure. Depends on the input (and output) size.
- Main paradigm: Constant size operations need constant time.
 - Adding two numbers: one step, $O(1)$ time
 - Intersection of two circles: one step, $O(1)$ time
- Time needed (e.g. in seconds) depends on used primitives, precision, implementation, language, hardware, …
Computational Geometry

Two main development phases:

- Designing and analyzing the algorithm
 - design principles
 - geometrical, mathematical and combinatorial relations
 - (special) data structures
 - proofs of correctness in all cases (special cases)
 - analysis of asymptotical efficiency (average / worst case; time / space)
 - ...

- implementing the algorithm
 - constant size (time), but sometimes complex primitives
 - complicated data structures
 - special cases (ignored / not relevant for asymptotic efficiency)
 - numerical issues / robustness / exact computation
 - ...
Overview

- Part 1 (Oswin, Tuesday)
 - Introduction
 - Line segment intersection
 - Convex hulls, 2D
- Part 2 (Thomas, Wednesday)
 - Triangulations
 - Related structures (substructures, dual structures)
- Part 3 (Tibor, Thursday)
 - 3D and higher dimensional Algorithms
 - CGAL/Matlab demos
Algorithmic Paradigms

There are some basic principles when designing algorithms:

- Greedy algorithms
- Scan line principle
- Divide & conquer
- Dynamic programming
- Randomized algorithms
- …
Line Segment Intersection

- Given are n segments in the plane. Do any pair of segments intersect?
Line Segment Intersection

- Application: Hidden line algorithms, layouts, collision detection, implicit in many geometric algorithms, …
Two segments intersect?

- When do two line segments intersect?
- Constant size problem 🚫 constant time operation!

- Implementation idea 1:
 - Solve a system of two linear equations for supporting lines: $y_i := k_i \cdot x_i + b_i$
 - Problems with vertical segments
 - Numerical problems for (near) parallel segments
- 🚫 bad idea!
Two segments intersect?

two line segments ab, cd intersect

different orientations abc, abd and
different orientations cda, cdb

compute the parity of the sign of the
determinant of four 3×3 matrices

orientation independent, numerical
stable, fast and reliable constant
time operation.
Naïve approach

- Testing two line segments takes constant $O(1)$ time
- First approach: Test any two pairs of line segments.
 - There are $n \cdot (n-1)/2 = \Theta(n^2)$ such pairs
 - Problem can be solved in quadratic time!
- There are examples with an quadratic number of line segment intersections:
- In the worst case we will need $\Theta(n^2)$ time to report them
- We can’t do better!
Improved approach

- Well, we can: We want to be faster if there are no or only few line segment intersections!
- Running time dependent on the input size \((n=\text{number of segments}) \) AND output size \((k=\text{number of intersections}) \)
 - output sensitive algorithm
- We will design an \(\mathcal{O}((n+k) \log n) \) time and \(\mathcal{O}(n+k) \) space algorithm.
Basic ideas

- Observation: If two segments intersect, their x-interval overlap.
Plane Sweep Technique

- Use a Scan Line L:
 - Traverse the scenario in x-direction
 - act locally
Plane Sweep Technique

- Scan Line L:
 - segments on L are sorted in y-direction
 - intersecting segments are neighbored in this sorting
Plane Sweep Technique

- Algorithm:
 - scan line is event driven (NOT continuous!)
 - maintain y-sorting for each event

segment start: insert in y-sorting
segment end: delete from y-sorting
intersection: switch in y-sorting
Pseudo-Code

- \(X = \emptyset, \ Y = \emptyset \)
- insert all start- and endpoints of segments into \(X \)
- WHILE \(X \neq \emptyset \) DO
 - \(m = \min\{X\} \), delete \(m \) from \(X \)
 - IF \(m \) is left endpoint THEN insert segment in \(Y \)
 ELSE IF \(m \) is right endpoint THEN delete segment from \(Y \)
 ELSE switch the two segments intersecting at \(m \)
 - FOR all new neighbors \(s_1s_2 \) in \(Y \) DO
 - IF \(s_1s_2 \) intersect in \(p \) to the right of \(L \) THEN
 - insert \(p \) in \(X \)
 - report \(p \)
Details on the Implementation I

- X-data structure handles ‘events’:
 - insert start- and endpoints and detected intersection
 - find x-minimum
 - delete x-minimum

- Priority queue problem, use e.g. heap data structure
 - per segment 2 start/end points inserted \((n \text{ times}) \)
 - per intersection one insertion \((k \text{ times}) \)
 - Delete each element when scanned over \((n+k \text{ times}) \)
 - each step takes time logarithmic in the structure size
 - \((n+k) \log (n+k) \) = \((n+k) \log n \) time and \((n+k) \) space
Details on the Implementation II

- Y-data structure handles ‘sorted segments on L’:
 - insert segments into sorting
 - Delete segments from sorting
 - Switch two segments in sorting

- Dictionary problem, use e.g. (2-4)-trees
 - per segment 1 points inserted, 1 deleted \((n \text{ times})\)
 - per intersection one switch \((k \text{ times})\)
 - Insertion, deletion takes time logarithmic in the structure size, switch takes constant time
 - \(\Theta(n \log n + k)\) time and \(\Theta(n)\) space
Details on the Implementation III

- Scan line reduces a 2-dimensional static problem to a 1-dimensional dynamic problem
- Insertion of segments in Y-sorting: segments, NOT values!
- Intersections found in arbitrary order (NOT X-sorted)
- Intersections might be found multiple times
- Presented algorithm has $(n+k) \log n$ time and $(n+k)$ space
- Can be improved to $(n \log n + k)$ time and (n) space
- To only detect whether intersections exist (k={0,1}): optimal $(n \log n)$ time and (n) space suffices
- Algorithm can be used for other geometric primitives, like circles, disks, …
Convex Hulls

- Let $S=\{p_1, p_2, \ldots, p_n\}$ be a set of n points.
- The convex hull of S is the smallest convex polygon containing S.

Applications:
- Diameter of point set
- Linear separability of set
- Width of a polygon
- Implicit in many CG-algorithms
Graham Scan

There exist many time and space optimal solutions to compute the convex hull.

Graham Scan [1972]:
- easy to implement 2D-approach:
- a modified (rotational) plane sweep (scan line) technique
 - 1) sort points cyclically
 - 2a) scan points in this order
 - 2b) remove non-extreme points
Graham Scan

1) sort points cyclically
2a) scan points in this order
2b) remove non-extreme points

- scan line: act only locally
- maintain convex hull of subset considered so far
Graham Scan

data-structure: STACK

- PUSH, POP as usual
- TOP topmost element
- TOP\(^+\) second element from top

Algorithm:

- \(p_1\) = point with minimum y-coordinate
- sort all other points cyclically around \(p_1\)
- \(\text{PUSH}(p_1, p_2, p_3)\)
- FOR \(i = 4\) TO \(n\) DO
 - WHILE \(\angle(TOP^+, TOP, p_i) > \pi\) DO
 - POP
 - \(\text{PUSH}(p_i)\)
Analysis Graham Scan

Algorithm:
- $p_1 =$ point with minimum y-coordinate
- sort all other points cyclically around p_1
- PUSH(p_1, p_2, p_3)
- FOR i = 4 TO n DO
 - WHILE $\angle(TOP^+, TOP, p_i) > \pi$ DO
 - POP
 - PUSH(p_i)

Analysis:
- $\mathcal{O}(n)$ time
- Sorting takes $\mathcal{O}(n \log n)$ time
- Each stack operation needs constant time
- Every point is popped at most once
- Every point is pushed at most once

A single WHILE loop may take linear time, BUT: all WHILE loops together take $\mathcal{O}(n)$ time

Theorem: Graham Scan computes the convex hull of n points in $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.
Remarks on Graham Scan

- Easy to implement, reliable, stable
- Time and space optimal: No deterministic sorting algorithm using element-comparison can be faster than $\Omega(n \log n)$.
- Efficient:
 - $\log n$ - terms come from sorting (small constants)
 - geometric part (left/right decisions …) runs in $\mathcal{O}(n)$ time
- Can be used to triangulate a point set in $\mathcal{O}(n \log n)$ time (see EDU-Talk tomorrow)
- Implicit 2-dimensional: sorting not possible in 3D or higher
 - No way to mimic Graham Scan for higher dimensions
Iterative Insertion

New approach: Iterative Insertion

- To complicated for 2D, but can be generalized to arbitrary dimension

- Randomized algorithm:
 - good expected running time (with high probability)
 - expectation of running time does not depend on input, but only on random-generator (coin, dice, …)
 - result is deterministic
 - Running time might be bad in the worst case, but probability smaller than collapse of operating system …
Iterative Insertion

Algorithm:

- start with random CH = triangle $p_1p_2p_3$
 (CH = tetrahedron $p_1p_2p_3p_4$ in 3D etc.)
- consider remaining points in random order
- IF p_i lies inside CH THEN ignore p_i
 ELSE update CH with p_i
 • add tangents from p_i to CH
 • remove inner elements of CH
Analysis I

- Analysis:
 - per iteration add ≤ 2 new edges
 - delete $k_i \geq 0$ inner edges
 - k_i might be large!
 - observe: $\sum_{i=4}^{n} k_i \leq 2(n-3)$
 - $\bigcup (n)$ steps

- But: we assumed **oracle** to
 - decide whether $p_i \in CH$
 - provide visible (inner/to delete) edge of CH
Oracle:
- take center point \(c = (p_1 + p_2 + p_3) / 3 \)
- connect all not-yet-inserted points to \(c \)
- store intersected edge of \(CH \) as witness (if it exists!)
- when a point is inserted, use witness
- witnesses have to be updated!
New witnesses can be found in $O(1)$ time per witness (choose one of two tangents)

Running time is $O(\text{number of witnesses}) + O(n)$ (see slide Analysis I)

$E[\text{number of witnesses}] = n \cdot E[\text{number of witnesses per point}]$

\ldots (next slide) $\ldots = n \cdot \Theta(\log n)$

Overall (expected) running time: $O(n \log n)$

memory: $O(n)$ to store witness information
Analysis III

- E [number of witnesses per point]:
 - let q be a fixed point, inserted (in random order) as i^{th} point
 - let p be a fixed point, inserted as j^{th} point, before q ($j < i$)
 - probability that the witness of q changes, when p is inserted $= \frac{2}{j}$
 - $E [\text{number of witnesses for } q] = \sum_{j=4}^{i} \frac{2}{j} < 2 \cdot \sum_{j=1}^{i} \frac{1}{j} = 2 \cdot H_{i-1} = \Theta (\log i) = \Theta (\log n)$
 - $H_i \ldots$ harmonic numbers
Notes on Iterative Insertion

- Can be generalized to 3D and beyond
 - start with tetrahedron (not triangle)
 - uses faces as witnesses (not edges)
- Needs randomization: not an on-line algorithm
- Insertion of one point might take linear time, but very unlikely
- No special distribution for point required
- Can be derandomized to run in deterministic $\mathcal{O}(n \log n)$ time
Further Reading

- Animation of convex hull algorithms (2D/3D) see e.g.:
 [Link](http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html)

- More about the design and analysis of algorithms:
 [Link](http://www.igi.tugraz.at/oaich/vorlesungen/e&a.html)

- Books:
 - *Introduction to Algorithms*
 Cormen, Leiserson, Rivest, Stein, MIT Press
 - *Computational Geometry – Algorithms and Applications*
 de Berg, van Kreveld, Overmars, Schwarzkopf, Springer-Verlag
 - *Algorithms in Combinatorial Geometry*
 Edelsbrunner, Springer-Verlag
 - *Computational Geometry*
 Preparata, Shamos, Springer-Verlag
Thanks ...

Thank you!

to be continued ... tomorrow

Danke!
23rd European Workshop on Computational Geometry

EWCG 07 March 19 – 21 2007, Graz, Austria

http://ewcg07.tugraz.at