Triangulations in

Monique Teillaud

INRIA
SOPHIA-ANTIPOLIS
Overview

Specifications
Definition
Various triangulations
Functionalities

Geometry vs. combinatorics

Representation

Software design
The traits class
The triangulation data structure

Using the Triangulation packages
User Manual
Reference Manual
Examples

More flexibility
Specifications
A 2d- (3d-) triangulation is a set of triangles (tetrahedra) such that:
- the set is edge- (facet-) connected
- two triangles (tetrahedra) are either disjoint or share (a facet or) an edge or a vertex.

yes :

no :

Triangulations in 3
Various triangulations

2D, 3D Basic triangulations
2D, 3D Delaunay triangulations
2D, 3D Regular triangulations
2D Constrained triangulations
2D Constrained Delaunay triangulations
Triangulations in 2d - 3d
Basic triangulations: lazy incremental construction

Delaunay triangulations: empty circle property
Regular triangulations

Weighted point \(p^{(w)} = (p, w_p), p \in \mathbb{R}^3, w_p \in \mathbb{R} \)

\(p^{(w)} = (p, w_p) \simeq \) sphere of center \(p \) and radius \(w_p \).

Power product between \(p^{(w)} \) and \(z^{(w)} \)

\[
\Pi(p^{(w)}, z^{(w)}) = \|p - z\|^2 - w_p - w_z
\]

\(p^{(w)} \) and \(z^{(w)} \) **orthogonal** iff \(\Pi(p^{(w)}, z^{(w)}) = 0 \)
Power sphere of 4 weighted points in \mathbb{R}^3 = unique common orthogonal weighted point.

$z^{(w)}$ is regular iff $\forall p^{(w)}, \Pi(p^{(w)}, z^{(w)}) \geq 0$

Regular triangulations: generalization of Delaunay triangulations to weighted points. Dual of the power diagram.

The power sphere of all simplices is regular.
Constrained [Delaunay] triangulations

Constrained Delaunay triangulations

Constrained empty circle property: the circumscribing circle encloses no vertex visible from the interior of the triangle.
Functionalities of CGAL triangulations

General functionalities

Traversal of a triangulation
- passing from a face to its neighbors
- iterators to visit all or faces of a triangulation
- circulators to visit all faces around a vertex
 or all faces intersected by a line.

Point location query

Insertion, removal, flips
Traversals of a triangulation

Iterators
- All_faces_iterator
- All_vertices_iterator
- All_edges_iterator

Circulators
- Face_circulator: faces incident to a vertex
- Edge_circulator: edges incident to a vertex
- Vertex_circulator: incident to a vertex

All_vertices_iterator vit;
for (vit = T.finite_vertices_begin();
 vit != T.finite_vertices_end(); ++vit)
{ ... }

Triangulations in...
Traversal of a triangulations cont’d

Line_face_circulator
Point location, insertion, removal
Flip
Additional functionalities for Delaunay triangulations

Nearest neighbor queries

Voronoi diagram
Additional functionalities for [Delaunay] constrained triangulations

Insertion and deletion of constraints
Geometry vs. Combinatorics
Triangulation of a set of points = partition of the convex hull into simplices.

Addition of an infinite vertex \rightarrow “triangulation” of the outside of the convex hull.

2D:
- Any face is a triangle.
- Any edge is incident to two faces.

Triangulation of \mathbb{R}^d \sim Triangulation of the topological sphere S^d.
Dimensions

dim 0

dim 1

dim 2

dim 3

a 4-dimensional triangulated sphere
Adding a point outside the current affine hull:

From $d = 1$ to $d = 2$
Representation
Based on faces and vertices.

Vertex
- Face_handle: `v_face`

Face
- Vertex_handle: `vertex[3]`
- Face_handle: `neighbor[3]`

Edges are implicit: `std::pair<f, i>`
where `f` = one of the two incident faces.
Faces are implicit: std::pair< c, i >
where c = one of the two incident cells.

Edges are implicit: std::pair< u, v >
where u, v = vertices.
From one face to another

\[n = f->\text{neighbor}(i) \]
\[j = n->\text{index}(f) \]
neighbor(ccw(i))

cw(i)

ccw(i)

2D - Around a vertex
Doubly Connected Edge List

Vertex
 Halfedge* vhe

Face
 Halfedge* fhe

Halfedge
 Face * left
 Vertex* source
 Halfedge* opposite
 Halfedge* next
 Halfedge* prev

incident vertex
next halfedge
halfedge
previous halfedge
incident face
opposite halfedge
n vertices
$3n - 6$ edges
$2n - 4$ faces

<table>
<thead>
<tr>
<th></th>
<th>DCEL</th>
<th>CGAL TDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Edges</td>
<td>$4 \times 2 \times (3n - 6)$</td>
<td>$6 \times (2n - 4)$</td>
</tr>
<tr>
<td>Faces</td>
<td>$(2n - 4)$</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$27n$</td>
<td>$13n$</td>
</tr>
</tbody>
</table>
Software Design
“Traits” classes

convex_hull_2<InputIterator, OutputIterator, Traits>
Polygon_2<Traits, Container>
Polyhedron_3<Traits, HDS>
Triangulation_2<Traits, TDS>
Triangulation_3<Traits, TDS>
Min_circle_2<Traits>
Range_tree_k<Traits>

...

Geometric traits classes provide:
Geometric objects + predicates + constructors

Flexibility:

• The Kernel can be used as a traits class for several algorithms
• Otherwise: Default traits classes provided
• The user can plug his own traits class
2D Delaunay Triangulation

Requirements for a traits class:
- 2D point
- orientation test, in-circle test

```cpp
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay;
```
Playing with traits classes

- 3D points: coordinates \((x, y, z)\)
- orientation, in_circle: on \(x\) and \(y\) coordinates

```cpp
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_euclidean_traits_xy_3<K> Traits;
typedef CGAL::Delaunay_triangulation_2<Traits> Terrain;
```
Triangulation_3< Traits, \textbf{TDS} >

<table>
<thead>
<tr>
<th>Triangulation</th>
<th>Geometry</th>
<th>Data Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>location</td>
<td>Combinatorics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>insertion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vertex</th>
<th>Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric information</td>
<td>Vertex-base</td>
<td>Cell-base</td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Triangulation_data_structure_2< Vb, Cb >

Vb and Cb have default values.
The base level

Concepts **VertexBase** and **CellBase**.

Provide

- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the **traits** class.
Using the Triangulation packages
A look at the User Manual

Representation, classes, . . .
A look at the Reference Manual

Locate_type
locate
• Along a straight line
 2 (/3) orientation tests per triangle (/tetrahedron)

 degenerate cases

• By visibility
 < 1.5 (/2) tests per triangle (/tetrahedron)

Breaking cycles: random choice of the neighbor
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream>
#include <fstream>
#include <cassert>
#include <list>
#include <vector>

struct K : CGAL::Exact_predicates_inexact_constructions_kernel {};

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Cell_handle Cell_handle;
typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;
int main()
{
 std::list<Point> L;
 L.push_front(Point(0,0,0));
 L.push_front(Point(1,0,0));
 L.push_front(Point(0,1,0));

 Triangulation T(L.begin(), L.end());

 int n = T.number_of_vertices();

 std::vector<Point> V(3);
 V[0] = Point(0,0,1);
 V[1] = Point(1,1,1);
 V[2] = Point(2,2,2);

 n = n + T.insert(V.begin(), V.end());

 assert(n == 6);
 assert(T.is_valid());
Locate_type lt;
int li, lj;
Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
assert(lt == Triangulation::VERTEX);
assert(c->vertex(li)->point() == p);

Vertex_handle v = c->vertex((li+1)&3);
Cell_handle nc = c->neighbor(li);
int nli;
assert(nc->has_vertex(v, nli));

std::ofstream oFileT("output",std::ios::out);
oFileT << T;
Triangulation T1;
std::ifstream iFileT("output",std::ios::in);
iFileT >> T1;
assert(T1.is_valid());
assert(T1.number_of_vertices() == T.number_of_vertices());
assert(T1.number_of_cells() == T.number_of_cells());
return 0;
}
Using the Delaunay Hierarchy

Location structure

$1/\alpha$
```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_hierarchy_3.h>

#include <cassert>
#include <vector>

struct K : CGAL::Exact_predicates_inexact_constructions_kernel {};  

typedef CGAL::Triangulation_vertex_base_3<K> Vb;
typedef CGAL::Triangulation_hierarchy_vertex_base_3<Vb> Vbh;
typedef CGAL::Triangulation_data_structure_3<Vbh> Tds;
typedef CGAL::Delaunay_triangulation_3<K,Tds> Dt;
typedef CGAL::Triangulation_hierarchy_3<Dt> Dh;

typedef Dh::Vertex_iterator Vertex_iterator;
typedef Dh::Vertex_handle Vertex_handle;
typedef Dh::Point Point;
```
int main()
{
 Dh T;

 // insertion of points on a 3D grid
 std::vector<Vertex_handle> V;

 for (int z=0 ; z<5 ; z++)
 for (int y=0 ; y<5 ; y++)
 for (int x=0 ; x<5 ; x++)
 V.push_back(T.insert(Point(x,y,z)));

 assert(T.is_valid());
 assert(T.number_of_vertices() == 125);
 assert(T.dimension() == 3);

 // removal of the vertices in random order
 std::random_shuffle(V.begin(), V.end());

 for (int i=0; i<125; ++i)
 T.remove(V[i]);
assert(T.is_valid());
assert(T.number_of_vertices() == 0);

return 0;
More flexibility
Changing the **Vertex_base** and the **Cell_base**

Triangulation

Geometric Functionality

Types

Vertex

Cell

Combinatorial Functionality

optional

User Additions

UserVB UserCB

Derivation

Template

Parameters

Types

Triangulation

Triangulation Data Structure

Geometric Traits

Template Parameters

VertexBase

CellBase

Optional User Additions

Derivation

Triangulations in

46
First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS.

```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

struct K : CGAL::Exact_predicates_inexact_constructions_kernel {}

typedef CGAL::Triangulation_vertex_base_with_info_3<CGAL::Color,K> Vb;

typedef CGAL::Triangulation_data_structure_3<Vb> Tds;

typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;

typedef Delaunay::Point Point;

int main()
{
    Delaunay T;
}"
```
T.insert(Point(0,0,0));
T.insert(Point(1,0,0));
T.insert(Point(0,1,0));
T.insert(Point(0,0,1));
T.insert(Point(2,2,2));
T.insert(Point(-1,0,1));

// Set the color of finite vertices of degree 6 to red.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin();
 vit != T.finite_vertices_end(); ++vit)
 if (T.degree(vit) == 6)
 vit->info() = CGAL::RED;

return 0;
}
Third option: write new models of the concepts

Second option: the “rebind” mechanism

• Vertex and cell base classes: initially given a dummy TDS template parameter: dummy TD provides the types that can be used by the vertex and cell base classes (such as handles).

• inside the TDS itself, vertex and cell base classes are rebound to the real TDS type

→ the same vertex and cell base classes are now parameterized with the real TDS instead of the dummy one.
Derivation
Optional User
and/or Geometric
Additions
Triangulation Data Structure

UserVB<...,DSVB<TDS=Self>>
UserCB<...,DSCB<TDS=Self>>

DSVertexBase<TDS=Dummy>
DSCellBase<TDS=Dummy>

Derivation
Rebind_TDS
Template parameters

UserVB<...,DSVB<TDS=Dummy>>
UserCB<...,DSCB<TDS=Dummy>>
template < class GT, class Vb = Triangulation_vertex_base<GT> >
class My_vertex
 : public Vb
{
public:
 typedef typename Vb::Point Point;
 typedef typename Vb::Cell_handle Cell_handle;

 template < class TDS2 >
 struct Rebind_TDS {
 typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
 typedef My_vertex<GT, Vb2> Other;
 };

 My_vertex() {}
 My_vertex(const Point&p) : Vb(p) {}
 My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}
...
}
Example

```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>

template < class GT, class Vb=CGAL::Triangulation_vertex_base_3<GT> > 
class My_vertex_base 
    : public Vb 
{
public:
    typedef typename Vb::Vertex_handle Vertex_handle;
    typedef typename Vb::Cell_handle Cell_handle;
    typedef typename Vb::Point Point;

    template < class TDS2 >
    struct Rebind_TDS {
        typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
        typedef My_vertex_base<GT, Vb2> Other;
    };

    My_vertex_base() {} }
```
My_vertex_base(const Point& p)
 : Vb(p) {}

My_vertex_base(const Point& p, Cell_handle c)
 : Vb(p, c) {}

Vertex_handle vh;
Cell_handle ch;
};

struct K : CGAL::Exact_predicates_inexact_constructions_kernel {}

typedef CGAL::Triangulation_data_structure_3<My_vertex_base<K> > Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;

typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point Point;
int main()
{
 Delaunay T;

 Vertex_handle v0 = T.insert(Point(0,0,0));
 Vertex_handle v1 = T.insert(Point(1,0,0));
 Vertex_handle v2 = T.insert(Point(0,1,0));
 Vertex_handle v3 = T.insert(Point(0,0,1));
 Vertex_handle v4 = T.insert(Point(2,2,2));
 Vertex_handle v5 = T.insert(Point(-1,0,1));

 // Now we can link the vertices as we like.
 v0->vh = v1;
 v1->vh = v2;
 v2->vh = v3;
 v3->vh = v4;
 v4->vh = v5;
 v5->vh = v0;

 return 0;
}